Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Savarimuthu Baskar Raj, ${ }^{\text {a }}$
 Packianathan Thomas

Muthiah, ${ }^{\text {a* }}$ Gabriele Bocelli ${ }^{\text {b }}$ and Lara Righi ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Chemistry, Bharathidasan University, Tiruchirappalli 620 024, India, and ${ }^{\text {b }}$ CSSD-CNR, University of Parma, Viale delle Scienze, Parma 43100, Italy

Correspondence e-mail: tomm@bdu.ernet.in

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.023$
$w R$ factor $=0.062$
Data-to-parameter ratio $=12.8$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetraaqua(8-hydroxyquinoline-5-sulfonato-N,O)nickel(II) monohydrate

In the title compound, $\left[\mathrm{Ni}(\mathrm{HQS})\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{HQS}$ is the 8-hydroxyquinoline-5-sulfonic acid dianion, $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{8} \mathrm{~S}$), the $\mathrm{Ni}^{\mathrm{II}}$ ion is coordinated by the N and quinolinolate- O atoms of HQS and four water molecules, exhibiting a distorted octahedral geometry. The sulfonic O atoms of HQS are not involved in the coordination. However, the sulfonic O atoms along with the coordinated and lattice water molecules play a vital role in assembling the three-dimensional structure by an extensive network of intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Furthermore, the overall structure is stabilized by $\pi-\pi$ stacking interactions between the ring moieties of HQS in the neighbouring complex molecules.

Comment

Oxine (8-hydroxyquinoline) and its derivatives are well known analytical reagents for metal ions and form well defined chelate complexes with many transition metals (Hollingsheard, 1956). Some of these compounds also act as potential antibacterial and anti-amoebic agents. Metal chelation has been implicated in their biological activity (Martel \& Calvin, 1959). The incorporation of sulfonic acid in the oxine moiety provides additional metal binding sites as well as hydrogen-bonding acceptor sites. This type of ligand is called sulfoxine.

In metal-oxinate systems, the chelation of the metal is achieved through N atoms and deprotonated quinolinol- O atoms. However, in metal sulfoxinates, in addition to the normal metal chelation by the oxine moiety, one of the sulfonic O atoms is also coordinated to the metal. This sulfonic O-atom binding can occur in two different coordination modes. In one mode, two inversion-related monomers are bridged by one of the sulfonic acid-O atoms involved in coordination, leading to a cage-like dimer. This has been observed in the copper sulfoxinate complexes (Petit, Coquerel et al., 1993; Petit, Ammor et al., 1993) and a cobalt complex of 7-iodo-8-hydroxyquinoline-5-sulfonic acid (ferron; Muthiah et al., 2001). In another mode, a sulfonic acid-O atom of one

Received 4 October 2001 Accepted 19 October 2001 Online 24 November 2001

Figure 1
A view of (I) with the atom-numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.
molecule is coordinated to the metal of another molecule leading to a one-dimensional polymeric arrangement (Petit, Coquerel et al., 1993). The various remarkable structural features observed in different metal complexes of HQS have prompted us to investigate the crystal structure of the title nickel ${ }^{\text {II }}$ complex, (I).

In (I), the geometry around the nickel ion is a distorted octahedron (Fig. 1). The N and O atoms of the quinolinol moiety and the two water molecules (O 2 and O 5) are coordinated to the metal in the equatorial positions. Another two water molecules (O3 and O4) occupy the axial positions in order to complete the octahedron. The axial $\mathrm{Ni}-\mathrm{O}$ (water) distances are slightly longer than the equatorial distances. The $\mathrm{Ni}-\mathrm{O}$ (quinolinol) bond is shorter than the $\mathrm{Ni}-\mathrm{N}$ bond by $0.045 \AA$, as expected (Palenik, 1964). The basic assumption is that the electronegativities of oxygen and nitrogen are not changed relative to one another.

The sulfonic acid group is not involved in metal coordination but makes an extensive network of hydrogen bonds with all the coordinated water molecules and a free water molecule, O1 (Table 2). Hydrogen-bonding patterns involving the sulfonate anion in biological systems and metal complexes are of current interest (Onoda et al., 2001). The coordinated water molecules O 2 and O3 make hydrogen bonds with atoms O19 and O18, respectively, of a symmetry-related $\left(\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z\right)$ sulfonic acid group. The O atom of the same symmetry-related quinolinol moiety and one of the sulfonic acid-O atoms, O19, are bridged by the free water molecule. These intermolecular hydrogen-bonding interactions involving the sulfonic acid group and the water molecules form a head-to-tail hydrogenbonded dimer-like arrangement (Fig. 2). On the other hand, the complex units are connected through coordinated water molecules O 2 and O 4 by a pair of symmetry-related ($-x, 1-y$, $1-z) \mathrm{O} 2-\mathrm{H} \cdots \mathrm{O} 4$ hydrogen bonds, as shown in Fig. 3. All these hydrogen-bonding interactions, together with the remaining $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds between water mol-

Figure 2
A view of the head-to-tail hydrogen-bonded dimer-like arrangement.
ecules and the sulfonic acid group, assemble the molecules into a supramolecular three-dimensional network, as depicted in Fig. 4. As can be seen in Fig. 4, each complex unit is stacked along the a axis between two neighbouring symmetry-related units, viz. $(1 / 2-x, 1 / 2+y, 1 / 2-z)$ and $(1 / 2-x, 1 / 2+y, 1 / 2-z)$. The average value of the dihedral angles between the pyridine and phenyl rings in the neighbouring HQS ligands is $18.9(5)^{\circ}$. The minimum slip angles [34.1 (4) ${ }^{\circ}$ and $24.8(1)^{\circ}$, angle between the centroid vector and the normal to the planes] are observed between the corresponding pyridine and phenyl rings in adjacent complex units, which shows that the pyri-dine-phenyl stacking alignment is better compared to pyri-dine-pyridine or phenyl-phenyl stacking. The interplanar and centroid-to-centroid distances between corresponding pyridine and phenyl rings in adjacent complex units are 3.276 (4) and 3.949 (7) \AA, and 4.350 (15) and 4.707 (5) \AA, respectively. The sulfonic acid-O atoms are also involved in weak C $\mathrm{H} \cdots \mathrm{O}$ hydrogen-bonding interactions. This type of weak $\mathrm{C}-$

Figure 3
A view of the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ bonds connecting two HQS ligands coordinated to $\mathrm{Ni}^{\mathrm{II}}$.
$\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding has also been observed in the crystal structures of 8 -hydroxyquinoline-7-iodo-5-sulfonic acid (Balasubramanian \& Muthiah, 1996a), 8-hydroxyquinoline-7-nitro-5-sulfonic acid (Balasubramanian \& Muthiah, 1996b) and cobalt-sulfoxinate (Muthiah et al., 2001).

Experimental

To a suspension of $\mathrm{NiCO}_{3} \cdot 2\left[\mathrm{Ni}(\mathrm{OH})_{2}\right] \cdot 4 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}, 0.0627 \mathrm{~g})$ in 50 ml of water, drops of dilute $\mathrm{HCl}(1 \mathrm{~N}, 5 \mathrm{ml})$ were added to obtain a clear solution. 8-Hydroxyquinoline-5-sulfonic acid monohydrate (MERCK-Schuchardt; $1 \mathrm{mmol}, 0.122 \mathrm{~g}$) was dissolved in 40 ml of water. The above solutions were mixed and stirred and warmed for about an hour. Crystals of (I) were obtained from an aqueous solution.

Figure 4
The supramolecular three-dimensional network structure of (I).

Crystal data

$\left[\mathrm{Ni}\left(\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{8} \mathrm{~S}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=371.99$
Monoclinic, $P 2_{1} / n$
$a=7.366$ (2) \AA
$b=9.000(2) \AA$
$c=21.456$ (2) \AA
$\beta=93.73$ (2) ${ }^{\circ}$
$V=1419.4(5) \AA^{3}$
$Z=4$
$D_{x}=1.741 \mathrm{Mg} \mathrm{m}^{-3}$
MoKa radiation
Cell parameters from 25 reflections
$\theta=1.9-28.0^{\circ}$
$\mu=1.56 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, green
$0.36 \times 0.29 \times 0.25 \mathrm{~mm}$

Data collection

Bruker AXS SMART
$R_{\text {int }}=0.023$
diffractometer
$\omega-2 \theta$ scans
$\theta_{\text {max }}=28.1^{\circ}$
$\omega-2 \theta$ scans
$h=-9 \rightarrow 9$
Absorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.519, T_{\text {max }}=0.678$
14764 measured reflections
3222 independent reflections
2925 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.023$
$w R\left(F^{2}\right)=0.062$
$S=1.02$
3222 reflections
251 parameters
All H -atom parameters refined
$k=-11 \rightarrow 11$
$l=-28 \rightarrow 28$
3 standard reflections frequency: 60 min intensity decay: none

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

Ni1-O2	2.0601 (14)	Ni1-O5	2.0585 (12)
Ni1-O3	2.0945 (14)	Ni1-O6	2.0209 (12)
Ni1-O4	2.0852 (13)	Ni1-N7	2.0658 (14)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 3$	88.00 (6)	O3-Ni1-N7	91.94 (6)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 4$	87.28 (6)	O4-Ni1-O5	89.44 (5)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 5$	89.28 (5)	O4-Ni1-O6	96.69 (5)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{O} 6$	175.96 (5)	O4-Ni1-N7	90.24 (5)
$\mathrm{O} 2-\mathrm{Ni} 1-\mathrm{N} 7$	97.35 (5)	O5-Ni1-O6	91.50 (5)
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 4$	175.02 (6)	O5-Ni1-N7	173.34 (5)
$\mathrm{O} 3-\mathrm{Ni} 1-\mathrm{O} 5$	88.91 (6)	O6-Ni1-N7	81.93 (5)
O3-Ni1-O6	88.05 (5)		

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 . . O19	0.74 (3)	2.12 (3)	2.824 (2)	159 (3)
$\mathrm{O} 1-\mathrm{H} 1^{\prime} \cdots \mathrm{O}^{\text {i }}$	0.73 (3)	2.12 (3)	2.830 (2)	165 (3)
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 19^{\mathrm{i}}$	0.81 (2)	1.96 (3)	2.7644 (19)	170 (2)
$\mathrm{O} 2-\mathrm{H} 2^{\prime} \cdots \mathrm{O} 4^{\text {ii }}$	0.79 (3)	2.11 (3)	2.879 (2)	166 (3)
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{O} 18^{\mathrm{i}}$	0.82 (3)	1.98 (3)	2.7756 (19)	165 (3)
$\mathrm{O} 3-\mathrm{H}^{\prime} \cdots \mathrm{O} 1^{\text {iii }}$	0.76 (3)	2.16 (3)	2.900 (2)	162 (3)
$\mathrm{O} 4-\mathrm{H} 4 \cdots \mathrm{O} 1^{\text {iv }}$	0.78 (3)	1.93 (3)	2.690 (2)	166 (3)
$\mathrm{O} 4-\mathrm{H} 4^{\prime} \cdots \mathrm{O} 18^{v}$	0.82 (3)	1.93 (2)	2.7133 (18)	161 (2)
$\mathrm{O} 5-\mathrm{H} 5 \cdots \mathrm{O}^{\text {vi }}$	0.83 (2)	1.94 (2)	2.7677 (18)	172 (2)
$\mathrm{O} 5-\mathrm{H}^{\prime} \cdots \mathrm{O} 20^{\text {iii }}$	0.87 (3)	1.94 (3)	2.8075 (18)	169 (2)
C8-H8 . ${ }^{\text {O }} 19^{\text {i }}$	0.964 (18)	2.534 (16)	3.267 (2)	132.8 (12)
C13-H13 . O18	0.970 (18)	2.399 (19)	2.831 (2)	106.4 (13)
$\mathrm{C} 14-\mathrm{H} 14 \cdots \mathrm{O} 2{ }^{\text {vii }}$	0.937 (19)	2.48 (2)	3.262 (2)	141.2 (18)

Symmetry codes: (i) $\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (ii) $-x, 1-y, 1-z$; (iii) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (iv) $x-\frac{1}{2}, \frac{1}{2}-y, \frac{1}{2}+z ;(\mathrm{v})-\frac{1}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$; (vi) $-x,-y, 1-z$; (vii) $-\frac{1}{2}-x, y-\frac{1}{2}, \frac{1}{2}-z$.

H atoms were all localized in difference Fourier maps, and were refined with isotropic displacement parameters. The $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ bond lengths are in the ranges 0.941 (2)-0.973 (3) and 0.735 (4)0.876 (5) Å, respectively.

Data collection: MolEN (Fair, 1990); cell refinement: MolEN; data reduction: MolEN; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure:

SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON97 (Spek, 1997); software used to prepare material for publication: PLATON97.

References

Altomare, A., Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. \& Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
Balasubramanian, T. \& Muthiah, P. T. (1996a). Acta Cryst. C52, 2072-2073.
Balasubramanian, T. \& Muthiah, P. T. (1996b). Acta Cryst. C52, 1017-1019.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Hollingsheard, R. G. W. (1956). Oxine and its derivatives. London: Butterworths.
Martel, A. E. \& Calvin, M. (1959). Chemistry of metal chelate compounds. Englewood Cliffs: Prentice Hall.
Muthiah, P. T., Balasubramanian, T., Thomas Carlson, F. \& Watson, W. H. (2001). J. Chem. Crystallogr. Submitted.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Onoda, A., Yamada, Y., Doi, M., Okamura, T. \& Ueyama, N. (2001). Inorg. Chem. 40, 516-521.
Palenik, G. J. (1964). Acta Cryst. 17, 687-695.
Petit, S., Ammor, S., Coquerel, G., Mayer, C. \& Perez, G. (1993). Eur. J. Solid State Inorg. Chem. 30. 497-507.
Petit, S., Coquerel, G., Perez, G., Louer, D. \& Lover, M. (1993). New J. Chem. 17, 187-192.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Spek, A. L. (1997). PLATON97. Utrecht University, The Netherlands.

